A University of Manchester PhD student has developed a prototype flexible heat shield for spacecraft that could reduce the cost of space travel and even aid future space missions to Mars.

Heat shields are essentially used as the brakes to stop spacecraft burning up and crashing on entry and re-entry into a planet’s atmosphere. This design is the first in the world to utilise centrifugal forces that stiffen lightweight materials to prevent burnup.

Current spacecraft heat shield methods include huge inflatables and mechanically deployed structures that are often heavy and complicated to use.

Rui Wu, from Manchester’s School of Mechanical, Aerospace and Civil Engineering, says as well as being lightweight in design is prototype is also “self-regulating”. This means there is no need for any additional machinery, reducing the weight of spacecraft even further and allowing for low-cost scientific research and recovery of rocket parts.

He says: “Spacecraft for future missions must be larger and heavier than ever before, meaning that heat shields will become increasingly too large to manage.”

To address this demand Wu and his team have developed a flexible heat shield that is shaped like a skirt and spins like a sycamore seed. Planets with atmospheres, such as Earth and Mars, allow spacecraft to utilise aerodynamic drag to slow down and the prototype’s design uses this to enable atmospheric entry.

“This is similar to high board diving, where the drag from water decelerates your body before you reach the bottom of the swimming pool,” Wu explains.

"Spacecraft for future missions must be larger and heavier than ever before, meaning that heat shields will become increasingly too large to manage." Rui Ru

The fast entry into Earth’s atmosphere generates so much heat – over 10,000 ˚C – that the air around the spacecraft can burn into plasma. For safe atmospheric entry, spacecraft need a front end, or shield, that tolerates high heat as well as an aerodynamic shape that generates drag.

However, Unlike Earth, the Martian atmosphere is very thin. “If Earth re-entry is like diving into thick honey, Mars entry would be like diving into water,” Wu says.

To carry heavy equipment and astronauts, a high drag area is needed. When entering Earth’s or Mars’ atmospheres, spacecraft require highly designed shields to avoid burnup, generate drag, and support heavy loads. Wu’s design potentially solves both issues.

The prototype is made of a flexible material that allows for easy storage on board spacecraft. This material, while foldable, is strong and has a high temperature tolerance. The shield is also stitched along a special pattern that allows it to spin up during flight, inducing centrifugal force.

Wu sees his design helping with space-based scientific research and rescue missions in the future. He adds: “More and more research is being conducted in space, but this is usually very expensive and the equipment has to share a ride with other vehicles.

“Since this prototype is lightweight and flexible enough for use on smaller satellites, research could be made easier and cheaper. The heat shield would also help save cost in recovery missions, as its high induced drag reduces the amount of fuel burned upon re-entry.”

Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons [Advanced materials video]

Reference: The paper 'Flexible heat shields deployed by centrifugal force the journal was published in the journal Acta Astronautica Rui Wua, Peter C.E.Roberts a Constantinos Soutis (b) Carl Diver (a) School of Mechanical, Aerospace and Civil Engineering, UK(b) The University of Manchester Aerospace Research Institute, UK https://doi.org/10.1016/j.actaastro.2018.06.021

Related

The University of Manchester
University
The University of Manchester

The University of Manchester is the UK’s largest single-site university.

1 Comments

Comments

  1. Meeloun
    服务质量是影响本科网课代上 http://www.wangkedaixiu.com/wkds/bk/ 价格的重要因素。不同本科网课代上机构提供的服务质量差异显著,高质量的服务往往伴随着较高的价格。高质量的本科网课代上服务通常意味着代修人员具备较高的学术背景和丰富的教学经验,他们能够提供更加准确和高效的学术支持。服务质量的高低直接影响到代上的效果和学生的成绩,因此,学生在选择本科网课代上服务时,应充分考虑服务质量而不仅仅是价格。例如,一些代修机构会提供包括作业完成、考试代考、在线课堂互动等全面的服务,并且保证高通过率和成绩提升,这些高质量服务的价格自然会更高。但从长远来看,选择高质量的服务是更为明智的投资。

Leave a Reply

*